人脸实别系统广泛采用区域特征分析算法,融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,具有广阔的发展前景。
在现代社会当中,身份认证与识别问题变得尤为重要。其中,基于人脸面部特征的识别技术因其具有的**优点脱颖而出,得到了广泛研究与应用。考虑到当前人脸识别技术遇到的相关难点,寻求了一种主成分分析(PCA)和线性判别分析(LDA)相结合的方法对人脸进行识别,并且基于LabVIEW/Matlab和摄像采集系统等软硬件设备,设计了人脸识别系统。该系统以人脸识别算法为基础,利用PC机为操作平台,通过将即时采集的人脸图像与所建立的人脸特征库比对,从而快速有效地查出已登记人员的身份信息。
虽然目前人脸识别系统已经取得了较好的识别效果,但依然受到光照、姿态、表情变化、发型、有无眼镜和年龄老化等多方面因素的影响。因此,本文对人脸识别技术的研究,具有重要的理论研究意义和实际应用价值。本文主要针对人脸识别中特征的选取和分类的问题,提出了一种线性鉴别方法(LDA)和基于稀疏表征的分类(Sparse Representation-based Classification, SRC)相结合的全局和局部表征集成方法,该方法利用线性鉴别分析方法在子空间上的... 更多
人脸图像特征提取:人脸识别系统可使用的特征通常分为视觉特征、像素统计特征、人脸图像变换系数特征、人脸图像代数 特征等。人脸特征提取就是针对人脸的某些特征进行的。人脸特征提取,也称人脸表征,它是对人脸进行特征建模的过程。人脸特征提取的方法归纳起来分为两大 类:一种是基于知识的表征方法;另外一种是基于代数特征或统计学习的表征方法。
基于知识的表征方法主要是根据人脸的形状描述以及他们之间的距离特性来获得有助于人脸分类的特征数据,其特征分 量通常包括特征点间的欧氏距离、曲率和角度等。人脸由眼睛、鼻子、嘴、下巴等局部构成,对这些局部和它们之间结构关系的几何描述,可作为识别人脸的重要特 征,这些特征被称为几何特征。基于知识的人脸表征主要包括基于几何特征的方法和模板匹配法。
人脸识别系统是人脸识别技术在生物特征识别领域的应用,旨在将人脸图像作为一种可以标识的生物特征进行编码与鉴别,目前较为广泛的应用于安防领域。由于云台摄像头的可控旋转特性,基于云台摄像头的人脸识别系统可以应用于公共区域的跟踪或教室的等。
公司拥有一支强大的技术团队,技术人员来自国内、外高校,研究所;此外,公司还与东京工业大学,德国汉堡工业大学,复旦大学,交通大学等国内外著 名高校建立紧密的技术合作关系。